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The nature of combat means that soldiers will suffer a mixture of primary, 

secondary, tertiary and quaternary brain injuries making it difficult to study the 

effects of the blast over pressure (BOP) wave in isolation. We used a porcine 

model to assess the impact of a primary blast in the context of polytrauma. 

We performed histopathology to investigate structural changes, axonal 

degeneration and the early microglial immune response. We also used 

standard MR imaging and DTI techniques to assess WM damage. This study 

aimed to identify accurate and robust correlates between neuroimaging and 

histopathology findings, strengthening the use of neuroimaging as a reliable 

diagnostic tool in human blast injuries.  

This work was in collaboration with DSTL Porton Down, Imperial College 

London and UCL. DSTL developed the porcine blast injury model and 

conducted the animal injury and resuscitation phases. I attended the 

experiments and retrieved the brains once the animals were sacrificed. I 

developed the imaging protocols with Marina Arridge at the Brain Imaging 

Centre at Imperial College London and performed the DTI analysis. With 

Professor Steve Gentleman, I co-supervised Ting Kwok perform the 

immunohistological preparation and I recorded and analysed the data with 

her. 

  

Introduction 

IEDs have become a major contributor to mortality and morbidity in the 

conflicts in Afghanistan and Iraq. Following discharge, veterans often present 

with symptoms consistent with mild TBI (Terrio 2009, Okie 2005). While the 

neuropathology underlying this cognitive impairment is currently unknown, it 

has been linked to a condition called chronic traumatic encephalopathy 

(Goldstein 2012), previously known as dementia pugilistica, in which 

chronically activated microglia cause a tauopathy in axons. This topic is 



important as blast injuries continue to be the main threat to troops around the 

world whilst survival rates of blast victims are improving (Penn-Barwell 2015).  

 

Pathophysiology of TBI 

To fully understand the histopathology results presented here, it is necessary 

to describe what happens at a cellular level when an injury to an axon occurs. 

In the healthy brain, glutamate is produced by neurons and taken up by 

astrocytes. These astrocytes then convert the glutamate into glutamine and 

return it to the neurons where it is an alternative energy source. Injured 

neurons overproduce glutamate and, if they die, release glutamate into the 

extracellular space. When there is too much glutamate for the astrocytes to 

remove, it binds to neuronal receptors (such as NMDA) and induces an influx 

of Ca2+ and Na+ and an efflux of K+.  This ionic imbalance causes the cell 

membrane to depolarise. Intracellular Ca2+ levels rise leading to mitochondrial 

dysfunction, reduced ATP formation (see Figure 1), energy failure and 

ultimately cell death. Mitochondrial dysfunction leads to a release of reactive 

oxygen and nitric oxide species which cause oxidative stress and damage to 

membrane lipids, proteins and DNA. Free Ca2+ activates enzymes (calpains) 

that disrupt the axon's cytoskeletal filaments. This disruption causes impaired 

axonal transport and a build up of amyloid precursor protein (APP) (Rosenfeld 

2012, Gentleman 1993). 

 



 

Figure 1. Pathophysiology of brain injury 

Acute - The cycle of cellular events that occur when a neuron is injured 

and which leads to APP accumulating in the axons, microglial activation 

and fibrinogen leakage from blood vessels. Chronic - The activated 

microglia modulate tau metabolism leading to beta-amyloid plaque 

(different to APP accumulation) deposition and neurofibrillary tangles 

(McKee 2009). 

 

Microglia are the immune cells of the central nervous system.  Signals emitted 

from injured neurons activate microglia which then change shape (Figure 2). If 

there are dead cells present, the microglia become phagocytes. Activated 

microglia accumulate at the injury site and secrete inflammatory cytokines, 

chemokines that stimulate the migration of activated leucocytes into the brain. 

Infiltrated neutrophils maintain the immune response to injury, impairing the 

blood brain barrier's integrity which in turn leads to fibrinogen leakage into 

tissues, increased extracellular fluids, cell swelling and brain oedema. In the 

long term, for an unknown reason, in some individuals activated microglia 

remain in the brain and can cause chronic traumatic encephalopathy by 

modulating tau protein metabolism (Goldstein 2012). In this study, we looked 



for APP as a marker of axonal injury, fibrinogen as an indicator of blood-brain 

barrier permeability and Iba1 (a microglia-specific calcium binding protein) to 

assess microglial morphology (Rosenfeld 2012, DeWitt 1995). 

 

 

Figure 2. Functional plasticity of microglial (Streit 1999) 

Injured or diseased neurons cause resting microglia to become 

activated by emitting injury signals. The degree of microglial activation 

varies with the severity of the neuronal injury. The mildest injuries may 

only cause hyper-ramification of microglia, but most types of neuronal 

damage will cause resting microglia to become reactive microglia. If 

neurons die, microglia transform into brain macrophages and remove 

the dead cells. If an injured neuron recovers, hyper-ramified and reactive 

microglia may revert to the resting form. Microglia-derived brain 



macrophages probably do not revert to the resting state, but may 

undergo cell death (Streit 1999). 

 

Haemorrhagic shock and resuscitation 

Isolated blast injury is very uncommon and it usually occurs in the context of 

polytrauma. Approximately 4% of soldiers suffered from both TBI and 

haemorrhagic shock (HS) (Okie 2005) in combat operations in Iraq and 

Afghanistan. The presence of HS is known to worsen the morbidity and 

mortality significantly from TBI (Wald 1993). The worsened morbidity and 

mortality seen in TBI with HS may be due to secondary ischaemic damage as 

well as the effect of the loss of cerebral autoregulation. The current treatment 

for soldiers and civilians suffering from both TBI and HS is the infusion of 

crystalloid fluids, such as saline to restore BP and tissue perfusion. However, 

there is some evidence that this may worsen cerebral oedema causing 

intracranial hypertension and a reduction of brain compliance (Teranishi 2012, 

Hariri 1993).   

Our injury model was designed to replicate the effects of battlefield 

polytrauma and the journey from injury and first-aid (Role 1), through 

evacuation (Role 2) to a medical facility (Role 3) (Garner 2009).  The term 

"Role" or "Echelon" is used by NATO to describe the stratification of tiers of 

medical support. Role 1 medical support is integrated into a unit and includes 

the capabilities for providing first aid and immediate lifesaving measures such 

as stopping the haemorrhage. Role 2 is typically provided at a larger unit 

level, usually Brigade size, though it may be provided farther forward, 

depending upon the operational requirements. In general, it provides 

evacuation from Role 1 facilities. Role 3 is at Division level and above. It 

incorporates additional resources, including diagnostic equipment such as CT 

scanners, as well as specialist surgical and medical capabilities (NATO 1997). 

The resuscitation strategies and timelines used in this study replicate these 

echelons of medical support. 

 



The porcine model 

Animal models examining pathological changes have improved understanding 

of the fundamental pathophysiology underlying blast trauma. However, 

findings from these studies cannot be readily translated to humans. Most 

animal studies of bTBI have used rodents (Xiong 2013). However, there are a 

number of limitations to using these types of animals. Rodent brains are 

smaller and have a porencephalic structure; this limits the applicability of their 

findings to humans.  The human brain has a gyrencephalic structure. The 

convolutions of the sulci and gyri will interact differently with any force acting 

on the brain and create a different pattern of injury. 

 

Figure 3. Comparison of rodent, pig and human brain 

A porencephalic rodent brain and the gyrencephalic pig and human 

brain. The folds on the brain's surface will influence the transmission of 

energy and the location of the injury (adapted from Gholipour 2014, 

Heteroherent 2011).  

 

In chronic traumatic encephalopathy following blast exposure, there is a 

predilection for injury at the base of the sulci, this illustrates the way that 

sulcal and gyral anatomy influence the location of damage (McKee 2014). 

Garner et al. (2009) developed a large-animal porcine model to address some 

of these limitations. Pigs have a gyrencephalic brain structure that is similar to 



the human and also have comparable glial-to-neuron ratios, myelin levels and 

water content. Also, experiments have shown that pigs' brain tissue is 

analogous to human brain tissue when assessed biomechanically (Thibault 

1998, Manley 2006).  

We used a porcine model developed by Garner et al. (2009) to investigate the 

structural and early immune effects of military blasts. We gave ten pigs a 

peripheral injury, exposed them to either sham or blast conditions, limiting the 

secondary and tertiary blast effects, before controlled haemorrhages. Both 

groups of pigs were then given normal saline corresponding to Role 1 care, 

prior to being assigned to one of two resuscitation strategies. The early 

resuscitation group received packed red blood cells (PRBC) and fresh frozen 

plasma (FFP) one h after injury, corresponding to Role 2 care, these were 

continued in the late phase of the resuscitation (corresponding to Role 3). The 

late resuscitation group continued to receive crystalloid fluid to maintain BP 

whilst at Role 2 before receiving PRBC and FFP once at Role 3. 

 

Figure 4. Timelines for fluid resuscitation in the early and late groups 

An overview of the injury model showing the different fluids used by the 

early and late resuscitation strategies and their corresponding timelines. 



This model replicates the timelines to Role 1, Role 2 and Role 3 medical 

care as set out by NATO. 

 

  



Methods 

All blast experiments were conducted by the Defence Science and 

Technology Laboratory (Dstl) at Porton Down. Garner et al. 2009 provides a 

detailed account of the development of this injury model, which combines 

blast, controlled haemorrhage and a soft tissue injury in a reproducible animal 

model, in order to carry out detailed physiological testing.   

The study was conducted on 10 terminally anaesthetised large white pigs in 

accordance with the Animal Scientific Procedures Act (1986). The pigs were 

anaesthetised with Isoflurane (5%) in O2N2O (FiO2 0.3) followed by Alfaxan 

(SaffanTM), before experimentation. Arterial blood and central venous 

pressures were recorded throughout the experiment via intravascular 

cannulation.  The injury and resuscitation model was divided into three 

phases: the shock phase, the pre-hospital phase and the in-hospital phase, to 

realistically simulate the experience of an injured soldier.  

 

Shock phase (Pre Role 1) 

After a 60 min recovery period following induction of anaesthesia, blood gases 

and cardiovascular measurements were made and the animal was randomly 

allocated to receive blast or sham (non-blast) treatment. The animals were 

wrapped in a Kevlar blanket to protect from secondary and tertiary blast 

effects and positioned outdoors on a trolley 2.15 m from a cylindrical charge 

of EDC1S explosive (2.2 kg), which was detonated remotely. 

 

 

Figure 5. Blast Rig 



The animal is seen here, on the right, wrapped in a Kelvar blanket on a 

sliding rail, which protected it from secondary and tertiary injuries. The 

high explosive charge was placed on top of the tube on the left. 

 

Animals subjected to the sham blast were treated identically but not exposed 

to the blast. All animals then received a haemorrhage of approximately 30% 

blood volume loss and blunt injury to the muscle of the right thigh. The animal 

was then left to enter a 30 min shock phase during which a capped amount of 

500 ml saline was given to prevent cardiovascular collapse and maintain the 

hypotensive target. 

 

Pre-hospital phase (Role 1) 

The treatment groups diverged at this point, those in the early resuscitation 

strategy group received up to 4:4 units of PRBC:FFP, which had been both 

forward and back cross-matched to the recipients. Animals in the late-

resuscitation strategy group received saline to the same hypotensive BP 

target. At this stage, oxygen was used (at least FiO2 0.3) to maintain an 

arterial concentration of 98%. 

 

In-hospital phase (Role 2+) 

After a 60 min simulated pre-hospital resuscitation phase, animals in the late-

resuscitation group then received fluid to a maximum of 6:6 PRBC:FFP to 

reach and maintain a normotensive BP  target, while a similar BP target was 

also employed in the early-resuscitation group. This resuscitation was 

continued for a further 150 min by which time all animals were sacrificed 

humanely with an overdose of pentobarbital (150 mg/kg i.v) and the heads 

removed for further analysis. 

 

Tissue preparation 

The heads of the animals were immediately removed and the soft tissues and 



mandible were separated from the skull. The skull was perforated with a 1 cm 

cranial perforator in the frontal and occipital bones and diffusion fixed in 2% 

paraformaldehyde solution for two weeks. Perfusion and diffusion fixation are 

both accepted methods for fixing whole brains. Perfusion fixation requires 

paraformaldehyde to be pumped continuously through the arterial supply to 

the head (Dyrby 2011) whilst diffusion fixation is performing by submerging 

the brain in paraformaldehyde for a predetermined period of time (Miller 

2011).  

Diffusion fixation was chosen as perfusion with paraformaldehyde would have 

invalidated the concurrent investigations into porcine physiology following 

trauma. In addition, the effectiveness of diffusion fixation has been 

demonstrated in larger, human brains. After two weeks, the brains were 

surgically extracted from the skulls and then examined for apparent external 

damage. They were then suspended in TechAgar and stored at 4°C and 

scanned in a 4.7 Tesla MRI scanner. We performed MR imaging on 8 of the 

10 brains (five blast and three sham animals).  

 

Immunohistochemistry 

We used a standard haematoxylin and eosin (H&E) staining procedure. 

Antibodies against Iba1, APP and fibrinogen, had not previously been used 

with porcine tissue, so the protocol was derived using experiments with 

antigen retrieval techniques and exposure times (see Supplementary Methods 

in Appendix 3). A Consultant Neuropathologist blinded to the group and 

resuscitation strategy of the animal examined the slides for structural damage, 

microbleeds, axonal pathology and microglial activation.  

 

H&E stain  

We examined all of the slices for structural changes, including oedematous 

pathology, alterations in cell morphology, and ependymal stripping. We looked 

for the presence of perivascular oedema, denoted by fibrous cavities 

surrounding the vessels in several regions including the orbitofrontal WM, 

hippocampus, corpus callosum, pons, medulla and cerebellum.  



 

Fibrinogen 

We used the presence of fibrinogen immunoreactivity to assess BBB 

permeability. In healthy subjects, fibrinogen is observed only within the 

vasculature. Increased BBB permeability leads to leakage of fibrinogen into 

the parenchyma, seen as a brown blush surrounding the vessel. We chose 

three standard sections throughout the brains and recorded all the cases of 

vascular leakage observed at 2 x magnification. We marked the presence and 

location onto a standardised outline of a porcine brain using graphics editing 

software (http://brainmuseum.org).  

 

Amyloid Precursor Protein (APP)  

We used APP to assess for the presence of axonal injury. When axons are 

injured axonal transport is interrupted and APP accumulates making the axon 

swell.  We looked in the WM in the same three sections for each animal. We 

defined a focus as a distinct clustering of axonal bulbs and recorded their 

presence and location of the identified Foci onto a standardised outline of a 

porcine brain using graphics editing software (http://brainmuseum.org). 

 

Iba 1  

We stained the tissue with anti-Iba1 to observe changes in density and 

morphology of microglia. Semi-quantitative analysis of microglial profiles was 

performed to determine the locality and extent of the immunoreactive 

response. A severity scale of low (*), moderate (**) and severe (***) was set 

out, judged on intensity of clustering and degree of morphology change (Table 

1), as shown in Figure 6. 

  



Table 1. Severity scale of damage to microglia 

Low (*)  Moderate (**) Severe (***)  

Microglia are mostly in a 

ramified state, with little 

retraction of processes 

and low density of cells 

Microglia have slightly 

thickened and retracted 

processes but cells are 

evenly distributed, 

suggestive of early 

activation and little 

migratory response 

Microglia have 

thickened and retracted 

processes, looking more 

like macrophages. 

Activated cells are often 

clustered indicative of 

widespread activation 

with proliferative and 

migratory responses 

 

 

Figure 6. Visual impressions of the semi-quantitative rating of microglial 

activation: A) low (*); B) moderate (**); C) severe (***) 20 x magnification 

 

1.1.1 Neuroimaging 

We developed an ex vivo neuroimaging protocol to create high-resolution 

MPRAGE (T1) and gradient-echo (T2*) and DTI images to assess the extent 

of focal brain injury and haemorrhage. A Consultant Neuroradiologist, blinded 

to the pigs’ blast injury status and resuscitation strategy, reviewed each of the 

standard structural scans (T1 and T2*sequences).  

 



DTI analysis  

Using a region of interest (ROI) approach we investigated FA within specified 

WM regions. We created ROI masks based on WM anatomy, in T1 space, for 

each animal. These regions were whole brain WM, the orbitofrontal WM, and 

the anterior internal capsule. These regions provide a representative measure 

of the degree of WM tract damage and are frequently disrupted by DAI (Mac 

Donald 2011). Informed by the histopathological results, we also created 

masks for the regions where we saw APP pathology. We extracted the mean 

FA value within the masks for each subject. SPSS was used to compare the 

mean FA in each of the regions between the blast and non-blast animals. 

 

Results 

Histopathology 

Ependymal stripping 

Stripping of the ependyma was identified in 4 of the six blast-exposed pigs, 

denoted by oedematous pathology underneath the ependyma with long 

fibrous attachments.  

 

Figure 7. Ependymal stripping 

 (A) Normal ependymal compared with (B) Ependymal stripping  

 

  



Hippocampal oedema 

Two bTBI animals had hippocampal oedema that was not seen in the sham 

animals. One animal (B2) showed bilateral oedematous appearances in the 

dentate gyrus (DG) of the ventral hippocampi, and another (B10) had 

unilateral changes in the DG of the ventral hippocampus. In both animals with 

hippocampal oedema, there was associated microglial activation in the 

adjacent brain (Figure 8). 

 

 

Figure 8. Hippocampal oedema with concurrent microglial activation 

(A) and (C) are the slices from the same section through the 

hippocampus in pig B2. (A) H&E stained section showing fibrous 

structural pathology denoting oedema and (B) was stained with anti-Iba1 

(brown colour) to show activation of microglia. (B) (D) Sections from 

animal B5 in which the oedema and microglial activation are not 

present.  

 



  



Perivascular oedema 

We observed perivascular oedema in both groups throughout the whole brain. 

Although in five of the six blasted pigs there were no microbleeds found, there 

were several microbleeds (extravascular erythrocytes indicating 

haemorrhage) found in the medulla of one of the blasted animals. This 

extravasation was associated with fibrinogen leakage. Both bTBI and sham 

groups displayed widespread fibrinogen leakage. There was no discernible 

pattern to the leakage, with this abnormality seen throughout the brains of all 

the animals (see Figure 9).  

 

 

Figure 9. Fibrinogen leakage 

 (A) The brown blush around the blood vessel indicates fibrinogen 

leakage compared to (B) a typical vessel. 

 

Amyloid Precursor Protein (APP)  

All the pig brains, both blast and non-blast, displayed some APP 

immunoreactivity, with 8 out of 10 pigs showing widespread positive axonal 

varicosities. Axonal varicosities were mainly seen in the mid-coronal slice 

below the lateral ventricles, and in the internal capsule extending into the 

thalamus as shown in Figure 10. 

 



 

Figure 10. APP immunostaining at (A) 20x mag and (B) 10x mag 

compared to (C) normal WM without axonal injury 

 

Iba 1 

In animals exposed to a blast, there was evidence of focal microglial 

activation in areas of ependymal stripping as well as widespread activation of 

microglia in the sub-ependymal region (Figure 11). There was no evidence of 

sub-ependymal microglial activation in the sham animals. However microglial 

activation was seen in both bTBI and sham groups in other apparently 

undamaged parts of the brain, suggesting that a component of the injury 

model separate to blast caused microglial activation. 

 

 

 

Figure 11. Microglial activation 

 (A) subependymal microglial activation and accumulation were seen in 

the blast pig (B1) without concomitant ependymal stripping; (B) 

subependymal microglial activation in the blast pig (B10) with 

ependymal stripping; (C) normal ependyma with ramified microglia. 

 



Neuroimaging 

The Gradient-echo and MPRAGE sequences showed no discernible 

difference between the two groups when reviewed (see Figure 12).  

 

 

Figure 12. MR imaging in a pig brain 

MPRAGE (T1) and Gradient Echo images of a pig brain in the (A) 

coronal, (B) saggital and (C) axial planes. 

 

When the whole brain FA was compared for blast vs non-blast, we found a 

significantly lower FA in pigs with blast exposure (p=0.04), suggesting a 

difference in the WM integrity of the two groups (Table 5-2). However, no 

difference in FA was found between the two injury statuses in the ROI 

comparisons of the corpus callosum, the anterior internal capsule and the 

orbitofrontal WM (p=0.4, p=0.4 and p=0.2 respectively). Guided by the APP 

immunohistological results, we created ROI masks bilaterally in the internal 

capsule/thalamic areas. The more targeted analysis in this ROI yielded a 

significant FA difference between blast and non-blast brains, with a lower FA 

indicative of axonal injury being seen in the blast group when compared to the 

non-blast group (p=0.016) (see Table 2). 

 



Table 2. Comparison of WM in blast vs. non-blast whole brain 

 

ROI 

Injury 

status 
Pig 

Whole 

brain 

Corpus 

Callosum 

Orbitofrontal 

WM 

Anterior 

internal 

Capsule 

Pathology 

led ROI 

Blast 

B2 

B3 

B8 

B9 

B10 

0.509 

0.493 

0.498 

0.531 

0.508 

0.431 

0.385 

0.395 

0.455 

0.515 

 

0.450 

0.352 

0.311 

0.408 

0.325 

 

0.271 

0.386 

0.452 

0.479 

0.536 

0.402 

0.294 

0.326 

0.344 

0.379 

Non-

blast 

B5 

B6 

B7 

0.531 

0.514 

0.539 

 

0.434 

0.398 

0.493 

 

0.329 

0.365 

0.342 

0.434 

0.409 

0.445 

0.399 

0.424 

0.480 

Average 

blast FA 

 

0.508 

 

0.436 0.369 0.425 0.349 

Average 

non-blast 

FA 

0.528 0.442 0.345 0.430 0.434 

t-test p-

value 
0.049 0.444 0.266 0.469 0.016 



Discussion 

The purpose of the blast injury in pigs study (BIPs) was to examine the effects 

of a primary BOP wave on the brain in a porcine model of polytrauma. The 

study has shown evidence that primary blast causes ependymal stripping with 

associated inflammation in the region of the lateral ventricles, helping to 

confirm that an isolated primary blast wave can cause brain injury. We found 

activation of the microglial cells throughout the brains of all animals raising 

important questions about the effects of polytrauma on the CNS and its 

treatment. Importantly the imaging results have confirmed that even at 4.7 

Tesla, standard structural MR is not as sensitive to WM damage as DTI. More 

work is needed to develop DTI as a tool for use in trauma. 

 

Neuropathology 

Ependymal stripping 

We found evidence of ependymal stripping in the region of the lateral 

ventricles. There was oedematous change underlying the areas of stripping 

as well as early activation of microglial cells indicating that the injury 

happened while the animals were alive. This finding supports previous work 

that has shown microglia activation within six hours of injury (Hoogland 2015). 

De Lanerolle et al. (2011) demonstrated periventricular axonal injury and 

astrocyte infiltration two weeks after blast exposure in a porcine model of mild 

blast TBI (de Lanerolle 2011). Similar to our study, de Lanerolle and 

colleagues did not observe any obvious injury such as haemorrhage in these 

animals. Other authors have shown an association between ependyma injury 

and localised microglial cell activation (Sarnat 1995). These findings suggest 

that the blast-induced ependymal damage we observed triggers early immune 

activation.  

There are several proposed mechanisms by which blast could cause brain 

injury, including spallation, implosion, and inertial effects (Nakagawa 2011, 

Leung 2008). Spallation is the disruption that occurs between materials of 

differing densities. As the BOP wave travels between materials, the 



compression component is reflected at the material interface, leading to 

fragmentation of the denser material. Implosion occurs when gas bubbles in 

the tissue are compressed by the shockwave. The tissues collapse as the gas 

re-expands following the wave passage, the surrounding tissue is damaged. 

While the BOP wave propagates, lighter density masses will accelerate more 

than denser ones, resulting in large stress forces at the interface. This is 

known as the inertial effect. As such, the most vulnerable organs affected in 

the blast are those with air/liquid interfaces, such as the auditory canals, lungs 

and abdomen (Elder 2010b, Champion 2009). Previous investigators have 

hypothesised that pressure waves could be transmitted through the CSF 

spaces of the brain and spinal canal (Courtney 2009, Bauman 2009). The 

ependymal stripping that we have observed at the interface between the CSF-

filled ventricles and the ependymal of the lateral ventricles supports the 

pressure wave transmission theory.   

 

Clinical implications of ependymal stripping 

The ependymal lining of the lateral ventricles has a role in controlling the 

composition and production of CSF as well as providing a reservoir of neural 

stem cells that can proliferate and migrate to areas of nervous tissue injury 

(Johansson 1999). The apical surface of the ependymal cells of the central 

nervous system have been shown to absorb and regulate the composition of 

CSF and the tight junction between ependymal cells act as a semi-permeable 

barrier to nervous tissue. Modified ependymal cells form the choroid plexus 

that produces CSF. Damaged ependymal may no longer be able to regulate 

the transport of fluid, ions and small molecules causing hydrocephalus. 

Tearing of the ependymal has been shown to leave discontinuities that 

become filled with the processes of subventricular astrocytes and can lead to 

extensive gliotic nodules (Sarnat 1995). Gliosis may change the compliance 

of the ventricular wall also leading to hydrocephalus. At the time of injury, a 

discontinuity in the tight junctions between the ependymal cells may 

predispose to infection, and ependymitis and ventriculitis are known to have 

high mortality rates (Lu 1998, Berk 1980). The loss of the neural stem cell 

reserve may have implications for neuroregeneration. Future research should 



be undertaken to determine if bTBI causes an ependymal injury in humans 

and if so whether there are higher rates of central nervous system infection 

and hydrocephalus. If future work confirmed ependymal injury, this would 

have significant implications for the design of personal protective equipment 

and the treatment of these injuries. 

Hippocampal oedema 

We also observed hippocampal oedema in two of the animals exposed to 

blast. This is in keeping with evidence from other studies which showed that 

the hippocampi are particularly susceptible to the effects of blast exposure (de 

Lanerolle 2011, Goldstein 2012, Miller 2015). Hippocampal injury is a well-

documented consequence of nbTBI as well (Hicks 1993, Kotapka 1991). This 

vulnerability may be for several reasons: firstly, the hippocampus contains a 

large proportion of the CA1 fields of the cornu ammonis which are sensitive to 

trauma (Duvernoy 1988); secondly, the fronto-basal parts of the brain, which 

have extensive hippocampal projection fibres (Cavada 2000), are frequently 

damaged in moderate to severe TBI (Gennarelli 1998). This orbitofrontal 

damage may therefore result in transneuronal hippocampal cell death. In 

bTBI, damage to the hippocampi might be a direct result of the BOP wave, or 

could be secondary to hypoxia or impaired perfusion due to hypovolaemia. 

Previous studies looking at patients with hippocampal damage from epilepsy 

have found that they have poor memory (Addis 2007). Future research should 

be conducted to determine if these effects occur in trauma. 

 

Perivascular oedema and generalised microglial cell activation 

We saw perivascular oedema with fibrinogen leakage and widespread 

microglial activation in bTBI animals, but also in the sham group who had a 

soft tissue injury and IV fluid resuscitation but no exposure to blast. This 

suggests that these changes arose from another aspect of the injury model 

unrelated to the blast. Tissue oedema has been shown to occur in peripheral 

tissues following administration of IV fluids (Scallan 2010) and so it is possible 

that the changes we have observed are a result of the resuscitation strategy. 

Future research should be conducted to determine if the relationship between 



perivascular oedema and IV fluid resuscitation as this could potentially worsen 

TBI outcome by increasing cerebral oedema, intracranial hypertension and 

reducing brain compliance (Hariri 1993, Teranishi  2012).  

Widespread microglial cell activation in both blast and sham groups is another 

interesting observation that resulted from an aspect of the model unrelated to 

blast exposure. Hoogland et al. 2015 conducted a systematic review of 51 

animal studies and showed that peripheral inflammatory stimuli can cause 

microglial cell activation. It is possible that inflammatory stimuli (cytokines) 

released by the soft tissue injury that the animals sustained activated the 

microglial cells in both groups. 

 

Amyloid precursor protein 

We found that both blast and sham pig brains showed early APP 

immunoreactivity, indicating that this result was not due to blast. However, 

there were some significant differences in the extent and location of reactivity 

seen between the two groups. The blasted pigs showed more extensive 

pathology in the orbitofrontal WM, the regions of the internal capsule and 

thalamus. This suggests that although blast is not the cause of the APP 

pathology it may exacerbate WM damage.  De Lanerolle et al. (2011) noted 

similar pathology in pigs treated in a similar blast paradigm two weeks 

following a blast. Our finding of APP within four hours of blast is consistent 

with previous studies in nbTBI that has shown APP accumulation within three 

hours following injury (Sherriff 1994). The absence of a control group of pigs 

that had not received fluid resuscitation is an important limitation of the BIIPs 

study. The animals were sacrificed four hours after injury, if a longer survival 

time before sacrifice were possible, more APP accumulation may be detected, 

producing a clearer picture of the axonal injury. Future work should be 

conducted, comparing pig brains subjected to an isolated blast exposure and 

a group of normal pig brains to determine the role of the resuscitation strategy 

in APP pathology.  

All histopathological analysis is subjective and, therefore, vulnerable to inter-

observer variability and bias. In the BIIPs study, we limited our observations to 



describing the presence or absence of individual pathologies and using semi-

quantitative rating scales to make the results as reproducible as possible.  

 

Imaging 

Even at 4.7 Tesla, standard structural imaging did not reveal any areas of 

damage in any of the brains. Using DTI, however, we observed that the 

blasted pigs had a lower whole brain FA than the sham animals. Areas of the 

brain found to have more APP accumulation drove this difference in FA. FA 

and APP are markers of axonal injury (Warner 2010, Zhu 2014) (Gentleman 

1993) and our work supports these findings. The absence of injury on 

structural MRI supports the previously stated view that standard structural 

imaging is not as sensitive as DTI when investigating WM damage and more 

work should be carried out to make DTI a readily available tool in the 

assessment of TBI. The imaging was performed on ex vivo brains and this 

may make the results difficult to translate into live human subjects. Also, the 

numbers of animals studied were small meaning that the findings need to be 

confirmed using a larger number of pigs and with a control group that had not 

received fluid resuscitation. High field strength MRI, using a 7 Tesla MRI 

demonstrates a hyperintense rim around the ventricles on FLAIR sequences 

(van Veluw 2015) and this may have a role in assessing ependymal integrity 

in the future. 

Only one of the blasted pigs brains showed evidence of extravasation of 

erythrocytes, indicating haemorrhage in several areas of the medulla. These 

haemorrhages are analogous to microbleeds. Future work should be carried 

out to determine if there were factors, such as abnormal coagulation, that 

influenced this result. 

 

Porcine model 

We used a porcine model to examine the effects of blast on the brain because 

of similarities in gyral anatomy, glial-to-neuron ratios and the analogous 

behaviour of the tissues (Thibault 1998, Manley 2006). However there are 

significant differences in skull composition (Bauman 2009), size, shape and 



integrity (Nakagawa 2011), which mean the findings may be different in 

humans. Pigs have thicker skulls and a different hindbrain orientation as well 

as larger sub-arachnoid spaces (Manley 2006), which may absorb and reflect 

energy differently. The neck of a pig is much thicker than that of a human, 

meaning that the whiplash-like forces that act on the head will be greater in 

humans. Pigs have hypercoagulable blood in comparison to humans and 

haemodilution further modulates coagulation. Therefore, the resuscitation 

targets used in this model may not produce the same effect in humans (Calzia 

2012). Finally for practical reasons, we chose to diffusion fix the brains rather 

than perform perfusion fixation. Diffusion of paraformaldehyde throughout the 

brain would not have been instantaneous and so the cellular changes that we 

have observed may have occurred later than four hours after the blast injury.  

 

Summary 

In summary, we studied the effects of primary blast exposure in a porcine 

model of polytrauma. We found that an isolated BOP wave produces 

ependymal stripping with associated microglial cell activation within four hours 

of injury, as well as hippocampal damage in a subgroup of blasted animals. 

Standard MR imaging did not identify any structural abnormalities which mean 

that these injuries may be unrecognised. DTI identified the internal capsule 

and thalamus as areas with lower FA indicating more axonal injury. 
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